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ABSTRACT

In this thesis a dynamical model for a two degree of freedom inverted pendulum on an

omnidirectional cart is developed. This system is actuated not only by the wheels on the cart

but also by a quadrotor system used to stabilize the inverted pendulum. The dynamic model

is designed to be modular allowing for the substitution of different actuators, electrics, and

control algorithms without the need to re-derive the model. The parameters of this system are

identified with procedures and background where necessary. This thesis presents two controller

methods: PID and LQG controllers. The PID controllers were designed using both hand tuning

and model based tuning. The LQG controllers were designed using a systematic procedure to

initially choose good weights and adjust the weights based off of systems performance in order

to get the most out of the system. All sets of controllers are presented along with a comparison

of their behavior and plots comparing the real system to that of the non-linear simulation. The

results of this design are discussed along with issues that shaped the design decisions, future

work and systems improvements are discussed.
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CHAPTER 1. INTRODUCTION

The inverted pendulum on a cart system as its name implies is simply a cart with a pendu-

lum that balances above the cart. Standard inverted pendulums on a cart move in a single axis

and traverse in a single plane. The pendulum is held in a vertical position by the motion of the

cart. This is useful so long as the cart can move along the rotational axis of the pendulum and

the moment of inertia of the pendulum is kept relatively small. If these requirements cannot

be met either due to the system design or other constraints a new method of stabilizing the

pendulum is needed.

The goal of the Robotic Agricultural Data Acquisition (RADA) system is to use a large two

degree of freedom (2DOF) inverted pendulum on a cart to traverse a corn field and measure the

height of the plants. The pendulum needs to have 2DOF so that wind and other disturbances

cannot cause the system to fall over in the field. Clearly the cart will not be able to move in

one of the pendulum degrees of freedom and the pendulum will need to be large an heavy in

order for sensors to be placed on the pendulum, therefore the moment of inertia will not be

small. Because of these design requirements, a quadrotor will be used to stabilize the pendulum

instead of the cart’s motion.

Quadrotors are traditionally flown like a helicopter using two pairs of counter-rotating

propellers to move through space. For this system, the motors will be rotated outwards by

90◦ and then the quadrotor is attached to the top of the pendulum. This way the rotors will

produce torque that can be used to stabilize the system. Then the inverted pendulum can be

kept vertical without the need for the cart to move. The propellers will be able to provide

additional torque as the system is scale up to larger pendulums, and the motors will not cause

the cart to counter rotate like they would if motors were placed at the base of the pendulum.
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This thesis discusses the initial prototype and design of the RADA system. The current

system consists of a 2DOF inverted pendulum on an omnidirectional cart. The cart can move

in both x and y without having to change its heading as well as control its heading, making it

a 3DOF cart. The total system has 5DOF and is designed for use indoors, making testing of

the initial system design simpler. This also allows the cart to disturb both degrees of freedom

of the inverted pendulum system. While both the pendulum and the cart can be thought of

as different entities as in Chapter 5 and Chapter 7, it is most effective to design controllers

for the whole system due to the interrelationships between the cart and the pendulum as in

Chapter 6. The design of model based control for the pendulum and cart as separate subsystems

is investigated in Chapter 7.

1.1 Literature review

The inverted pendulums on a cart is a classic controls problem. Works such as [1], [2],

[3], [4], present multi-degree of freedom inverted pendulums. The work in [2] presents a large

inverted pendulum system on a ball. The issue with these cases the linear motion of the ball

is what stabilizes the pendulum. In some cases, it may be desirable to be able to stabilize an

inverted pendulum without having to move the base. Systems such as [4] need to use a large

motor to stabilize even a small pendulum. Another option is to use a system of propellers like

those used on quarotors, [5]. A system using propellers could be tall but be contained by a

small vehicle and maintain the stability of the system even if the vehicle cannot maneuver to

keep the pendulum system stabilized.

One application of this type of system could be crop monitoring. Works such as [6] and [7]

present vehicles that can monitor weeds and even participate in weed control. A large inverted

pendulum on a cart could be used to monitor weeds and the health of crops such as corn where

it could be difficult for other types of systems to navigate into positions to collect the required

data. This work will present a two degree of freedom inverted pendulum on an omnidirectional

cart using a quadrotor system to stabilize the pendulum system.



www.manaraa.com

3

1.2 Objectives

The objective of this thesis are as follows:

• Describe design of the system created in conjunction with the RADA senior design team.

• Develop a parametrized non-linear simulation of the designed system.

• Develop additional parameter identification procedures beyond those developed in [8].

• Design and implement linear controllers to effectively control the system.

The RADA system was designed by the RADA senior design team from May of 2015, based

off of the input from myself and others within the lab group. The team was given the specific

goals for RADA and then they designed the specific implementation of the prototype. The

system design is an integral component of this thesis, as other sections depend on the specific

system implementation, so the system design is discussed here.

The non-linear model was developed in order to design controllers. It is important that the

model is parameterized in such a way that parameters can be changed easily when components

of the system are changed. The non-linear model used for the simulation should be designed

so that subsystems can be easily changed and substituted as prototypes are improved. Many

of the parameter identification procedures were developed in [8] but some parameters are new

for this system model and identification techniques needed to be developed.

Finally, the model needs to be used to design linear controllers. This is necessary to verify

that the model is good enough at predicting the behavior of the real prototype. Therefore, the

system model needs to be accurate enough to design effective controllers.

1.3 Summary

The rest of this thesis is broken down into three parts. The Part I, Chapter 2, breaks down

how the RADA prototype was designed. The construction of the system is important for how

the model was derived as well as determining what can be expected out of the performance of

the system.
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Part II, Chapter 3 and Chapter 4, describes how the system is modeled both for controller

design and for simulation. There are slight differences between the controller design model

and the simulation model that make the simulation more efficient and minimizes the states in

the controller. The parameters of model and how they are measured is also discussed. While

many of the parameter measurements were previously discussed in [8], some of the parameters

measurement techniques have been improved and require further discussion.

Part III, Chapter 5 through Chapter 7, discusses the linear controller design. This includes

the model verification through PID controller design and testing. Then discusses how the

system is linearized and the design parameters used for controller design. The performance of

these controllers are examined as well.

1.4 Notation

The notation used in this thesis is should be fairly consistent. The general structure of the

symbols used in this document is as follows:

[T imeDerivative]
[Frame of Reference] [MAJOR SYMBOL][Exponent/Transpose][Designation/Index]

The designation that is most commonly missing in this document is the reference frame. That

is only used if the same variable is used for multiple reference frames. A complete list of

important Symbols used in this thesis is shown in Table 1.1. In addition to these symbols there

are a few acronyms used throughout this thesis, they are normally defined as they are used and

are also defined in Table 1.2.

Table 1.1: List of symbols used in this thesis

Symbol Units Description

E [none] Earth reference frame marker
P [none] Pendulum reference frame marker
R [none] Robot reference frame marker

bx [none] Pendulum body x axis
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Table 1.1 : continued

Symbol Units Description

by [none] Pendulum body y axis

bz [none] Pendulum body z axis

φ rad Roll Euler angle

θ rad Pitch Euler angle

ψ rad Yaw Euler angle

Θ rad Vector of Euler angles

p rad/s Pendulum body angular velocity about bx

q rad/s Pendulum body angular velocity about by

r rad/s Pendulum body angular velocity about bz
PΩ rad/s Pendulum body angular velocity vector

L←−−
EP

[none] Pendulum body reference frame to Earth body reference frame

L←−
ER

[none] Robot body reference frame to Earth body reference frame

A←−−
PE

[none] Converts Θ̇ to PΩ
Exp m Pendulum global x position
Eyp m Pendulum global y position
Ezp m Pendulum global z position
EXp m Pendulum global position vector
Pxcm m Pendulum local center of mass x component
P ycm m Pendulum local center of mass y component

lp m Length from point of rotation to pendulum center of mass in P z

x m Global robot x position

y m Global robot y position

z m Global robot z position

EX m Vector of global robot position

P←−−
EP

[none] Converts pendulum global linear velocity to global rotational velocity

KEplin J Linear kinetic energy of pendulum
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Table 1.1 : continued

Symbol Units Description

KEprot J Rotational kinetic energy of pendulum

KEptot J Total kinetic energy of pendulum

KEglin J Linear kinetic energy of robot

KEgrot J Rotational kinetic energy of robot

KEgtot J Total kinetic energy of robot

KE J Total kinetic energy

PE J Total potential energy

MP Kg Mass of the pendulum body

Jxx Kg m2 Moment of inertial of the pendulum about its x axis

Jyy Kg m2 Moment of inertial of the pendulum about its y axis

Jzz Kg m2 Moment of inertial of the pendulum about its z axis
PJ Kg m2 Moment of inertia tensor of the pendulum body

MC Kg Total effective mass of the robot

JzzR Kg m2 Moment of inertia of the robot about its z axis

PE J Potential energy of the system

g m/s2 Acceleration due to gravity

Ezpen m Height of the center of mass of the pendulum

L J Lagrangian energy sum

fx N Force produced by propellers in pendulum x

fy N Force produced by propellers in pendulum y

l m Total length of the pendulum

lmot m Length from the top of the pendulum to the center propeller

Rr m Radius of the ground robot

Fwi N Force produced by the ith wheel

Tfψ Nm Torque produced from rolling resistance

Ffx N Rolling resistance friction on robot x axis
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Table 1.1 : continued

Symbol Units Description

Ffy N Rolling resistance friction on robot y axis

M Kg Mass of the robot

Jm Kg m2 Moment of inertia of the wheel motor rotor

Kg [none] Gear ration of wheel motor gearboxes

rw m Radius of the wheels

mw Kg Mass of an individual wheel

ηg [none] Efficiency of motor gearbox

ηm [none] Efficiency of wheel motors

KQw Nm/A Wheel motor torque constant

KVw
rad
V s Wheel motor back-emf constant

Rmw Ω Resistance of wheel motors

Vbat V Voltage of wheel battery

aH [none] Slope of H-bridge commands

uwi [none] Command for ith wheel

uwg [none] H-bridge command gain adjustment
Rẋ m/s Robot frame x velocity
Rẏ m/s Robot frame y velocity

µrx [none] Rolling resistance coefficient for x axis

µry [none] Rolling resistance coefficient for y axis

µrψ [none] Rolling resistance coefficient for yaw

ωi rad/s Velocity of the ith propeller

J̃r Kg m2 Effective moment of inertia of the propeller and motor rotor

KQ Nm/A Propeller motor torque constant

KV
rad
V s Propeller motor back-emf constant

Rm Ω Resistance of propeller motors

Vquad V Voltage of propeller battery



www.manaraa.com

8

Table 1.1 : continued

Symbol Units Description

Kd
Kg m2

rad2 Drag of propeller

if A Propeller motor friction current

ui [none] Command for ith propeller

umax [none] Maximum propeller command

KT
Kg m
rad2 Propeller thrust constant

σT Kg/rad Propeller thrust velocity adjustment

vi m/s Linear velocity of the ith propeller system

uwmax [none] Maximum wheel command

udead [none] Wheel command dead zone offset

uwiout [none] Effective command of the ith wheel

uφ [none] Roll command

uθ [none] Pitch command

uψ [none] Yaw command

ux [none] x velocity command

uy [none] y velocity command

unom [none] nominal propeller command

ẋref m/s x velocity reference

ẏref m/s y velocity reference

mquad Kg Mass of quadrotor system

mrod Kg Mass of pendulum rod

lquad m Height of quadrotor system

rrod m Radius of pendulum rod

Jmbody Kg m2 Moment of inertia of the quad system about its roll and pitch axes

Jquadzz Kg m2 Moment of inertia of the quad system about its yaw axis

τ s Time rise of motor and propeller system

Λ [mixed] Vector of states
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Table 1.1 : continued

Symbol Units Description

U [none] Vector of input commands

w [none] Vector of disturbance inputs

wψ [none] Yaw disturbance input

wx [none] x axis disturbance input

wy [none] y axis disturbance input

Λ∗ [mixed] Linearization point of state vector

U∗ [none] Linearization point of input commands

w∗ [none] Linearization point of disturbance inputs

GB [none] Gain used on input matrix for controller design

T s Sample period of the controller

Qxu [none] LQG controller weighting matrix for states and inputs

Qwv [none] LQG controller weighting matrix for estimating states and outputs

QI [none] LQG controller weighting matrix for tracking references
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Table 1.2 List of common acronyms
Acronym Description
RADA Robotic Agricultural Data Acquisition (the system)
FPGA Field Programmable Gate Array
CPU Computational Unit
PID Proportional Integral Derivative controller
LQG Linear Quadratic Gaussian controller
LQR Linear Quadratic Regulator
LQI Linear Quadratic Regulator with integral tracking
LAN Local Area Connection
PWM Pulse-width Modulation
Lipo Lithium polymer battery
LIDAR Light detection and ranging
IMU Inertial measurement unit
GPS Global Positioning System
VRPN Virtual Reality Peripheral Network library
SSH Secure Shell
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CHAPTER 2. SYSTEM DESCRIPTION

The RADA system was conceived to collect data about crops while traversing a field. This

system primarily is meant for small scale research use as a small vehicle that can fit between

two rows of corn. This leads to the use of an inverted pendulum on a cart system. This avoids

the issues with having a large sensor mast rigidly attached to a vehicle with a small wheel base.

With rough terrain or wind, the vehicle could possibly cause the system to tip over and damage

itself or the crops it is trying to measure. A quadrotor or other aerial systems are not ideal

because measurements like crop height should be more accurate if taken from a side view.

2.1 Platform

The physical system for this work consists of a 2DOF inverted pendulum attached to an

omnidirectional (3DOF) cart. That is, the pendulum is free to both pitch and roll with respect

to the cart, and the cart can both translate and rotate on a flat surface. The pendulum is

actuated at the top by two orthogonal pairs of propellers, one pair for each degree of freedom,

and the cart is actuated by four independent omnidirectional wheels. This setup is depicted in

Figure 2.1.

The overall system design is a proof of concept for what could eventually be used for farming

or other applications with needs for a long arm with sensors along the length. Especially when

the sensor arm cannot be rigidly attached to the system due to terrain or other disturbances.

The inverted pendulum is referred to as the pendulum arm, sensor arm and/or sensor mast.

The pendulum is a simple hollow aluminum rod with a balsa wood quadrotor frame. The motor

mounts for the quadrotor were designed by [9], a senior design team, to point the propellers

outwards. After some testing it was determined that the propellers need to be mounted so
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that air flows away from the system. The propeller and motors are attached to the motor

controller through signal wires run up the pendulum arm and powered by a four cell Lithium

polymer (Lipo) battery through a large cable running up the pendulum. The ground vehicle

is based off Eris, omnidirectional robot platform developed by a previous senior design team,

[10]. It can move linearly in both x and y axes as well control its heading with zero turning

radius. The motors powering the wheels are brushed DC motors with gearboxes controlled by

H-bridges. These H-bridges are controlled by a forward and reverse pulse-width modulation

(PWM) channels for each motor in order to control both the speed and direction of each wheel.

The wheel motors are powered by a two cell Lipo battery. The host CPU is an Atom processor

running a custom Linux build based off of the Debian distribution. This allows for libraries like

the Virtual Reality Peripheral Network library (VRPN) which requires an operating system.

A camera localization system determines the 6DOF global position of both the pendulum and

and the ground vehicle and broadcasts the data over VRPN at 100 Hz. More information can

be learned about the camera system from Chapter 3 of [8]. RADA can be controlled though

an secure shell (SSH) connection and command prompt. RADA is connected to these other

systems through a local area connection (LAN) or through a wireless network connection.

Table 2.1 contains a list of the major commercial and open source components.

The current form of RADA clearly could not be taken outside as the ground vehicle cannot

handle the rough terrain. The end goal for this initial phase of the project is to determine if the

overall system can perform well enough to be useful in the field. This means that the propeller

system can stabilize the pendulum arm without needing any assistance from the ground vehicle

and can reject disturbances well enough to allow for sensors to produce useful data. If this

initial system works well; a new version of the system could be designed to be capable of going

out in the field. This first design is useful for two reasons. The first is that it will allow for

the sensor arm to be subjected to disturbances in both the pitch, θ, and roll, φ, axes, which

a non-omnidirectional vehicle could not do while indoors. Secondly it is a more interesting

problem for an indoor prototype. Finally, the model derived and verified in this thesis can be

simplified to act like new vehicle with fewer degrees of freedom.
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For modeling the system, Euler angles were used to represent the orientation of both the

pendulum and the ground vehicle. For Euler angles the order in which angles are resolved is

important because each angle calculation can be thought of as an intermediate reference frame.

This means that the order in which the angles are calculated changes the resulting orientation

calculation. For this system the angles will be calculated in the order yaw, pitch, and then roll

(ψ, θ, φ). The resulting transformation matrices will be discussed further in Chapter 2.2.

Eventually the system will need to be extend to have sensor on the sensor mast that will

include a least one camera, LIDAR, and other sensors that could be used to gather data on

the target plants or objects. This will be taken into account by modeling the center of mass

location of the inverted pendulum. Data processing of these sensor may happen on board or

the data may be stored for processing later.

The overall architecture of RADA has been designed such that with the right ground vehicle

the sensor mast will be well controlled in rough terrain and other disturbances. The goal is to

model RADA well enough to track velocity commands while quickly rejecting the pendulums

angular displacement from vertical. This way there needs to be less correction of sensor data

for orientation of the pendulum and better data from the sensors. This should allow the best

scenario for successful data acquisition.

2.2 Reference frames

In order to derive the system’s body dynamics, it is important to discuss reference frames.

Euler angles are used in this model and the order that the angles are resolved effects the

orientation. Because the same setup and camera system is used here as in [8], the same

reference frame definitions are used in this derivation. The important transformation matrices

are presented in Equation 2.1 through Equation 2.5.

Equation 2.1 converts linear body velocities of the pendulum body to the global reference

frame of the camera system, while Equation 2.2 does the same conversion for the robot body.

For the way the system is currently designed the yaw, ψ, is the same for both bodies of the

system.
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L←−−
EP

=


cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

 (2.1)

L←−
ER

=


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (2.2)

It is important to note that L←−
ER

inverse is defined by Equation 2.3.

LT←−
ER
L←−
ER

= I (2.3)

Therefore, Equation 2.4 is the reverse transformation.

L←−
RE

= LT←−
ER

(2.4)

Equation 2.5 converts angular velocities from the global camera system reference frame,

Euler angles, to rotational velocities in the pendulum’s reference frame. This doesn’t have an

equivalent for the ground robot because since the robot can only rotate in yaw the yaw velocity

and local rotational velocity are equivalent. If this model is extended to allow for the ground

robot to pitch and roll this will need to be changed and the model would need to be extended

for these new axes of rotation.

A←−−
PE

=


1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ

 (2.5)
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Figure 2.1 RADA system design concept without wheels.
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Table 2.1 Major system components
Part Description Source
Pluto board Motherboard with Intel Atom Processor used as the hose CPU [11]
MESA 4i68 FPGA FPGA used as motor controller for PWM generation [12]
Pololu Dual MC33926 Motor Driver Carrier (H-bridge) for wheel motors [13]
Fauhaber 2232U006SR Brushed DC motors for wheels [14]
Fauhaber 20/1 14:1 Wheel gearbox paired with wheel motors [15]
omnidirectional wheels 6 cm omnidrectional wheels [10]
DJI 2212/920KV DJI brushless DC motor [16]
DJI Prop 8045 DJI 8 inch propeller [16]
OPTO 30A ESC used with the DJI 2212/920KV motors [16]
BLHeli ESC firmware [17]
Optitrack V100 camera localization [18]
Tracking Tools Camera system software [18]
VRPN UDP localization broadcasting [19]
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CHAPTER 3. SYSTEM DYNAMICS DERIVATION

The body dynamics of RADA are derived using the Lagrangian method. This requires

the calculation of the kinetic and potential energy contained by the system. The Lagrangian

function is defined by Equation 3.1, where KE is the total system kinetic energy and PE is

the total system potential energy. The dynamics of the actuators will be derived separately.

Before the dynamics can be derived the position and orientation of the subsystems, pendulum

and ground robot, written in terms of an inertial reference frame. This reference frame is called

the earth reference frame throughout this paper.

L = KE − PE (3.1)

3.1 Position and velocity description

The position and velocity, both linearly and rotationally, must be in the Earth reference

frame in order to use the Lagrangian method. The main difficulty is defining the linear position

of the pendulum. The linear position of the pendulum is described in Equation 3.2. Where
EXP is the center of mass of the pendulum in the earth reference frame, lp is the length from

the point of rotation of the pendulum to the center of mass of the pendulum, Pxcm is x distance

in the pendulum reference frame from the center line of the pendulum to the center of mass of

the pendulum, P ycm is x distance in the pendulum reference frame from the center line of the

pendulum to the center of mass of the pendulum, L←−−
EP

is the transformation matrix between

local positions and global positions.

EXP = L←−−
EP


Pxcm

P ycm

−lp

+E X (3.2)
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˙EXP = L̇←−−
EP


Pxcm

P ycm

−lp

+ ˙EX (3.3)

Taking the derivative of Equation 3.2 results in Equation 3.3. Equation 3.4 will allow Equa-

tion 3.3 to be simplified and written in terms of the linear and angular velocity of the system.

Where Θ is the vector of Euler angles.

L̇←−−
EP


Pxcm

P ycm

−lp

 = P←−−
EP

Θ̇ (3.4)

The pendulum linear velocity can then be written as in Equation 3.5.

˙EXP = P←−−
EP

Θ̇ +E Ẋ (3.5)

Equation 3.5 can be used for defining the systems kinetic energy.

3.2 Kinetic energy

The kinetic energy of the body can be written as the sum of the linear and rotational kinetic

energy of the pendulum and the ground robot.

3.2.1 Pendulum

The linear kinetic energy of the pendulum can be written as Equation 3.6 by using the

linear velocity found in Equation 3.5 where Mp is the mass of the pendulum system.

KEplin = 1
2Mp

(
P←−−
EP

Θ̇ +E Ẋ
)T (

P←−−
EP

Θ̇ +E Ẋ
)

(3.6)

Equation 3.6 can be expanded to Equation 3.7.

KEplin = 1
2Mp

(
Θ̇TP T←−−

EP
P←−−
EP

Θ̇ + 2 ˙EXTP←−−
EP

Θ̇ + ˙EXT EẊ
)

(3.7)
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The rotational kinetic energy of the pendulum can be written as Equation 3.8 where A←−−
PE

converts the Euler angular velocities to local body angular velocities and PJ is the moment of

inertia tensor of the pendulum about its center of mass.

KEprot = 1
2Θ̇TAT←−−

PE

PJA←−−
PE

Θ̇ (3.8)

The total kinetic energy of the pendulum system is represented by Equation 3.9, is simply the

sum of Equations 3.7 and 3.8.

KEptot = 1
2Θ̇T

(
MpP

T←−−
EP
P←−−
EP

+AT←−−
PE

PJA←−−
PE

)
Θ̇ +Mp

˙EXTP←−−
EP

Θ̇ + 1
2Mp

˙EXT EẊ (3.9)

3.2.2 Ground robot

The ground robot in this model is an omnidirectional vehicle so it can move in any direction

on the xy-plane without requiring rotation. The vehicle can yaw and it is assumed that the

ground it is traversing is flat and smooth so the model need not deal with the pitch and roll of

of the ground vehicle. With these assumptions in mind the linear kinetic energy of the ground

robot is given by Equation 3.10.

KEglin = 1
2Mc

˙EXTLT←−
RE
L←−
RE

EẊ (3.10)

It can be shown that LT←−
RE

is equal its inverse allowing Equation 3.10 to be simplified to Equa-

tion 3.11.

KEglin = 1
2Mc

˙EXT EẊ (3.11)

The rotational kinetic energy of the ground robot is given by Equation 3.12, where JzzR is the

moment of inertia of the ground robot about its z-axis.

KEgrot = 1
2Θ̇T


0 0 0

0 0 0

0 0 JzzR

 Θ̇ (3.12)

Therefore, the total kinetic energy of the ground robot is given by Equation 3.13

KEgtot = 1
2Mc

˙EXT EẊ + 1
2Θ̇T


0 0 0

0 0 0

0 0 JzzR

 Θ̇ (3.13)
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3.2.3 Total kinetic energy

The total kinetic energy of the system is given by the sum of the total kinetic energy of the

pendulum system and the total kinetic energy of ground robot as given by Equation 3.14.

KE = 1
2Θ̇T

MpP
T←−−
EP
P←−−
EP

+AT←−−
PE

PJA←−−
PE

+


0 0 0

0 0 0

0 0 JzzR



 Θ̇

+Mp
˙EXTP←−−

EP
Θ̇ + 1

2 (Mp +Mc) ˙EXT EẊ (3.14)

3.3 Potential energy

The potential of the system is defined for this system in general as Equation 3.15 due to

the definition of the reference frame where g is the force of gravity.

PE = −Mpg
Ezpen (3.15)

Because the ground robot is defined as being on a level, smooth surface that can support the

system and that the pendulum actuation system cannot produce enough upward force to lift

the system off the ground it is assumed that Ez = 0. Due to the reference frame definition

where the z-axis is in the direction of gravity, the potential energy needs to be inverted. This

reduced potential energy is given by Equation 3.16, where φ is the Euler angle for roll and θ is

the Euler angle for pitch.

PE = Mpg

[
sin θ − sinφ cos θ − cosφ cos θ

]

Pxcm

P ycm

−lp

 (3.16)

.
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3.4 Lagrangian

Using Equations 3.14 and 3.16 the Lagrangian function is given by Equation 3.17.

L = 1
2Θ̇T

MpP
T←−−
EP
P←−−
EP

+AT←−−
PE

PJA←−−
PE

+


0 0 0

0 0 0

0 0 JzzR



 Θ̇ +Mp
˙EXTP←−−

EP
Θ̇

+ 1
2 (Mp +Mc) ˙EXT EẊ −Mpg

[
sin θ − sinφ cos θ − cosφ cos θ

]

Pxcm

P ycm

−lp

 (3.17)

The body dynamics can be defined by Equation 3.18.

d
dt
∂L
∂Θ̇ −

∂L
∂Θ =


−fy (l + lmot)

fx (l + lmot)

−Rr
4∑
i=1

Fwi + Tfψ



d
dt

∂L
∂EẊ

− ∂L
∂EX

= L←−−
EP


fx

fy

0

+ L←−
ER


−Fw1 + Fw3 + Ffx

Fw2 − Fw4 + Ffy

0



(3.18)

Equation 3.19 through Equation 3.22 define the components of the left hand side of the body

dynamics equations from Equation 3.18.

d

dt

∂L

∂Θ̇
=
(
Mp

(
Ṗ T←−−
EP
P←−−
EP

+ P T←−−
EP
Ṗ←−−
EP

)
+ ȦT←−−

PE

PJA←−−
PE

+AT←−−
PE

PJȦ←−−
PE

)
Θ̇

+

MpP
T←−−
EP
P←−−
EP

+AT←−−
PE

PJA←−−
PE

+


0 0 0

0 0 0

0 0 JzzR



 Θ̈ +MpP
T←−−
EP

EẌ +MpṖ
T←−−
EP

EẊ (3.19)
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∂L

∂Θ = 1
2


Θ̇T

(
MP

(
∂PT←−−

EP
∂φ P←−−

EP
+ P T←−−

EP

∂P←−−
EP
∂φ

)
+

∂AT←−−
PE
∂φ

PJA←−−
PE

+AT←−−
PE

PJ
∂A←−−

PE
∂φ

)
Θ̇

Θ̇T

(
MP

(
∂PT←−−

EP
∂θ P←−−

EP
+ P T←−−

EP

∂P←−−
EP
∂θ

)
+

∂AT←−−
PE
∂θ

PJA←−−
PE

+AT←−−
PE

PJ
∂A←−−

PE
∂θ

)
Θ̇

Θ̇T

(
MP

(
∂PT←−−

EP
∂ψ P←−−

EP
+ P T←−−

EP

∂P←−−
EP
∂ψ

)
+

∂AT←−−
PE
∂ψ

PJA←−−
PE

+AT←−−
PE

PJ
∂A←−−

PE
∂ψ

)
Θ̇



+Mpg


ycm cosφ cos θ + lp sinφ cos θ

−xcm cos θ − ycm sinφ sin θ + lp cosφ sin θ

0

+Mp


EẊT ∂P←−−EP

∂φ Θ̇
EẊT ∂P←−−EP

∂θ Θ̇
EẊT ∂P←−−EP

∂ψ Θ̇

 (3.20)

d

dt

∂L

∂EẊ
= (Mp +Mc) EẌ +MpṖ←−−EP Θ̇ +MpP←−−EP Θ̈ (3.21)

d

dt

∂L

∂ EX
= 0 (3.22)

Finally, Equation 3.18 can be solved for the rotational and linear accelerations of the system.

Equation 3.23 solves for these accelerations. While this solution solves for six accelerations it

was assumed that the floor will not allow the ground robot to accelerate downwards so it is

always set to zero.
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 Θ̈
EẌ

 =


MpP

T←−−
EP
P←−−
EP

+AT←−−
PE

PJA←−−
PE

+


0 0 0

0 0 0

0 0 JzzR

 MpP
T←−−
EP

MpP←−−EP (Mc +Mp) I



−1

×




−
(
Mp

(
Ṗ T←−−
EP
P←−−
EP

+ P T←−−
EP
Ṗ←−−
EP

)
+ ȦT←−−

PE

PJA←−−
PE

+AT←−−
PE

PJȦ←−−
PE

)
Θ̇

−MpṖ←−−EP Θ̇



+



1
2


Θ̇T

(
MP

(
∂PT←−−

EP
∂φ P←−−

EP
+ P T←−−

EP

∂P←−−
EP
∂φ

)
+

∂AT←−−
PE
∂φ

PJA←−−
PE

+AT←−−
PE

PJ
∂A←−−

PE
∂φ

)
Θ̇

Θ̇T

(
MP

(
∂PT←−−

EP
∂θ P←−−

EP
+ P T←−−

EP

∂P←−−
EP
∂θ

)
+

∂AT←−−
PE
∂θ

PJA←−−
PE

+AT←−−
PE

PJ
∂A←−−

PE
∂θ

)
Θ̇

Θ̇T

(
MP

(
∂PT←−−

EP
∂ψ P←−−

EP
+ P T←−−

EP

∂P←−−
EP
∂ψ

)
+

∂AT←−−
PE
∂ψ

PJA←−−
PE

+AT←−−
PE

PJ
∂A←−−

PE
∂ψ

)
Θ̇



L←−−
EP


fx

fy

0





+



Mpg


ycm cosφ cos θ + lp sinφ cos θ

−xcm cos θ − ycm sinφ sin θ + lp cosφ sin θ

0

+Mp


EẊT ∂P←−−EP

∂φ Θ̇
EẊT ∂P←−−EP

∂θ Θ̇
EẊT ∂P←−−EP

∂ψ Θ̇



L←−
ER


−Fw1 + Fw3 + Ffx

Fw2 − Fw4 + Ffy

0





+


−MpṖ

T←−−
EP

EẊ +


−fy (l + lmot)

fx (l + lmot)

−Rr
4∑
i=1

Fwi + Tfψ


0




(3.23)

While Equation 3.23 describes the general dynamics of the system, it is still necessary to

describe how the non-conservative forces act on the system.
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3.5 Wheel forces

The system is affected by two main forces acting on the system through the wheels. The

first is the force produced by each wheel motor. The wheels are assumed to have perfect contact

with the ground and are able to rotate without slipping similar to the cart on a rack and pinion

gear described in [20]. The second force is rolling resistance, presented in [21], which creates

a lumped parameter model including imperfect contact between the wheels and the ground;

bearing frictions; and other friction forces.

3.5.1 Wheels force

The wheels being modeled as a perfect system without slip allows the wheel force to be

written in terms of the linear and angular velocity of the cart. This also allows for the mass of

the cart and the moments of inertia of the wheels to be absorbed into a single parameter as in

Equation 3.24; where Mc is the lumped mass of the cart system, M is the mass of the cart, Jm

is the inertia of the motor rotor, Kg is the gear box ratio, rw is the radius of the wheels, and

mw is the mass of the wheels. This equation is the sum of the mass of the cart and the total

moment of inertia of the wheels as well as the motor rotor translated into the wheel’s reference

frame.

Mc = M +
4JmK2

g

r2
w

+ 2mwr
2
w (3.24)

The force produced the wheels can represented by Equation 3.25, where ηg is the gear box

efficiency, ηm is the motor efficiency, KQw is the torque constant of the wheel motors, KVw

is the velocity constant of the motors, Rmw is the resistance of the wheel motors, Vbat is the

voltage of the wheel battery, aH is an H-bridge constant, uwi is the command input of the ith

motor, and uwg is again for adjusting for the PWM command generation. Both the wheel force

model in Equation 3.24 and Equation 3.25 are described in [20].

Fw1 = ηgKgηm
KQwRmw r

2
w

(
VbatrwaHuw1

uwg
− Kg

KVw

(
−Rẋ−Rrψ̇

))
Fw2 = ηgKgηm

KQwRmw r
2
w

(
VbatrwaHuw2

uwg
− Kg

KVw

(
Rẏ −Rrψ̇

))
Fw3 = ηgKgηm

KQwRmw r
2
w

(
VbatrwaHuw3

uwg
− Kg

KVw

(
Rẋ−Rrψ̇

))
Fw4 = ηgKgηm

KQwRmw r
2
w

(
VbatrwaHuw4

uwg
− Kg

KVw

(
−Rẏ −Rrψ̇

))
(3.25)
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3.5.2 Rolling resistance

The omnidirectional cart system modeled in Chapter 3.5.1 is assumed to be perfect. This

assumption will work with a slight adjustment to correct for the non-idealities in the wheel

bearings and in the contact between the wheels and the ground. This can be taken care of by

the rolling resistance presented in Chapter 5.3 and Chapter 10.3 of [21]. The corresponding

rolling resistance force and torques are represented by Equation 3.26, where µrx , µry , and µrψ

are the rolling resistance coefficients in the x, y, and yaw axes. While Rr is the radius of the

cart.
Ffx = −µrx (Mc +Mp) g sign

(
Rẋ
)

Ffy = −µry (Mc +Mp) g sign
(
Rẏ
)

TTψ = −µrψRr
Mc+Mp

4 g sign
(
ψ̇
) (3.26)

Overall this is a good model of the rolling resistance. It does have drawbacks, mainly the

sign function is discontinuous at zero. This will be dealt with in two ways. For the purposes

of linearization and controller design, sign
(
Rẋ
)
, sign

(
Rẏ
)
, and sign

(
ψ̇
)
will be treated as

disturbance inputs. For simulation purposes, Equation 3.27 is used because it is a contiguous

function that approximates the sign function. In Equation 3.27 v is any velocity and Ct is a

constant that effects the speed the function switches from -1 to 1. This equation comes from

[22].

sign (v) = sign (v)
(
1− exp−Ct|v|

)
(3.27)

3.6 Quadrotor dynamics

The quadrotor system similar to the system presented in [8] with the motors angled outwards

in order to stabilize the sensor mast as opposed to achieving fight.

3.6.1 Quadrotor motor dynamics

The quadrotor motor propeller system used in the RADA system are a set of four brushless

DC motors. The dynamics of these motor systems are modeled using the same dynamics

presented in [8]. The final results of the dynamical model shown in Equation 3.28, where KV

is the quad motor’s velocity coefficient, KQ is the quad motor’s torque coefficient, Kd is the
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drag coefficient of the propellers, Rm is the motor resistance, J̃r is the total moment of inertia

of the motor and propeller system, if is the friction current of the motor, Vquad is the voltage

seen by the quad motors, ui is the PWM duty cycle command, umax is the maximum PWM

command, and ωi is the motor velocity.

ω̇i = − 1
J̃rKQKVRm

ωi −
Kd

J̃r
ω2
i −

if

J̃r
+ Vquad

umaxJ̃rRmKQ

ui (3.28)

The motor propeller system is assumed to be fast in comparison to the rest of the system so for

controller design purposes the quadrotor propeller transient dynamics will be reduced out of the

system but these dynamics will remain in the model for simulation purposes. Equation 3.28 is

solved for zero angular acceleration and it is assumed that the propeller speed must be positive,

as is the case with quadrotor motor and propeller systems.

ωi =
−1

RmKVKQ
+
√

1
R2
mK

2
VK

2
Q
− 4Kd

(
if
KQ
− Vquadui

umaxRmKV

)
2Kd

(3.29)

3.6.2 Propeller wrench

The propeller system produces both forces and torques. This wrench will be converted into

two equivalent force equations that act on the system. The force produced by the propeller

system can be shown to be simplified into a few lumped parameter equations as shown by

[8]. The total force produced by a single propeller is shown in Equation 3.30, where KT is

the propeller constant, δT is a velocity thrust adjustment, and vi is the velocity of the motor

perpendicular to the propeller disk.

fi = KTω
2
i + δT viωi (3.30)

The torque produced by the propeller system can be modeled with a simple lumped parameter

model related to the drag of the propeller system as presented in [8]. Equation 3.31 represents

the magnitude of the torque. This torque is applied about the axis of rotation of the motor in

the opposite direction of the motor’s rotation.

Ti = −Kdω
2
i (3.31)
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While there are other force and torque parameters presented in [8] as the model was built up

and tested it was determined that the model matches the system’s behavior well enough that

it is unnecessary to add further parameters to this model.

3.6.3 Total propeller force

The total propeller forces are a product of Equation 3.30 and Equation 3.31 and the physical

layout of the motors and propellers. The quad motors are positioned as if the they were on a

quadrotor in the cross configuration, meaning one pair actuates pitch and the other actuates

roll. One pair rotates clockwise while the other pair rotates counter-clockwise. The propellers

are flipped upside down so that the air flow created by the propellers flows away from the body

of the system. This removes any need to attempt to model the aerodynamic effects of pushing

a large volume of air into a much smaller space. The total force produced by the propeller

system is represented by Equation 3.32 and Equation 3.33.

fx = KT

(
ω2

3 − ω2
1

)
+ δT

(
(l + lmot) q −R ẋ

)
(ω3 − ω1) + Kd

l + lmot

(
ω2

4 − ω2
2

)
(3.32)

fy = KT

(
ω2

4 − ω2
2

)
+ δT

(
(l + lmot) p+R ẏ

)
(ω4 − ω2)− Kd

l + lmot

(
ω2

3 − ω2
1

)
(3.33)

3.7 Input dynamics

The input dynamics of RADA add additional actuator dynamics by taking into account

the saturation points and dead zone of the H-bridges, electronic speed controllers (ESCs), and

PWM generation.

3.7.1 Saturation and dead zones

Saturation is by far the simplest of these dynamics to take into account. The quad motors

must have a positive command since the ESCs being used are not setup to reverse the motors,

therefore the duty cycle ratio command, the ratio between the command and the maximum

command will always be between zero and one. The valid input range for the quad motors

is represented by Equation 3.34. This doesn’t quite tell the whole story. An additional offset

needs to be added to the command to reach the valid range of ESC commands. This matters
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in implementation but for the modeling, simulation, and controller design it is an unnecessary

addition and then subtraction that won’t affect the behavior of the system.

0 ≤ ui ≤ umax, ∀i (3.34)

The wheels however are bi-directional, they can move the system both forwards and backwards.

Their valid command range is represented by Equation 3.35.

−uwmax ≤ uwi ≤ uwmax , ∀i (3.35)

This takes care of saturation of the actuators. The H-bridges also have a dead zone where it

doesn’t activate. The behavior of the output of the command uwi is shown by Equation 3.36.

uwiout =


uwi + udead, uwi < −udead

0, −udead ≤ uwi ≤ udead

uwi − udead, uwi > udead

(3.36)

3.7.2 Mixing

The system model thus far has eight inputs into the system, one each for the four propellers

and one for each of the four wheels. The system only has five degrees of freedom so it would

be ideal to reduce the inputs down to one per degree of freedom to reduce computational

demands on the system. The propeller commands will be reduced into two commands, one for

actuation of the pitch axis and the other for actuation of the roll axis. The wheel commands

will be reduced to three inputs, one for x, y, and heading. The mixing Equation is defined by

Equation 3.37, this mixer mixes the new inputs: uφ, uθ, uψ, ux, and uy; into the inputs to each

of the motors. The mixing matrix also has two pseudo non-linear extensions. The first fixes the

wheel commands for a non-zero yaw position. The wheels act on the x and y axes differently

as the heading of the vehicle changes. This mixer also allows for the system to change heading

and still function correctly. The second is an offset added to ux and uy based off of the sign

of the commanded velocity ẋref and ẏref to deal with the dead zone in the H-bridges and

offset portion of the rolling resistance which is acting as a disturbance on the model seen by

controllers.
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

u1

u2

u3

u4

uw1

uw2

uw3

uw4



=



0 1 0 0 0

−1 0 0 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 −1 − cosψ − sinψ

0 0 −1 − sinψ cosψ

0 0 −1 cosψ sinψ

0 0 −1 sinψ − cosψ





uφ

uθ

uψ

ux + 6656 sign (ẋref )

uy + 6656 sign (ẏref )


+



unom

unom

unom

unom

0

0

0

0



(3.37)



www.manaraa.com

30

CHAPTER 4. PARAMETER IDENTIFICATION

Most of the parameters that need to be identified can be identified using techniques de-

veloped in Chapter 5 of [8]. Many of the parameters are either directly identified using these

procedures or indirectly measured and then calculated from these parameters. Any other pro-

cedures developed for parameter identification will be outlined in the corresponding section.

4.1 Masses

The masses of the system where just measured simply using the same digital scale in

[8]. Table 4.1 contains all the masses needed to define the composite mass Mc, defined in

Equation 3.24, and Mp, defined in Equation 4.1.

Mp = mquad +mrod (4.1)

4.2 Lengths

Lengths are important to parameterize this model for a few reasons. First it allows for

the approximation of many of the moments of inertia that would be difficult, unwieldy, or

dangerous to measure using the moment of inertia identification technique developed in [8]. It

also allows for the approximation of the center of mass of the sensor mast system.

Table 4.1 Mass parameter values
mass parameter value unit

M 2.761 Kg

mw 0.034 Kg

mquad 0.588 Kg

mrod 0.548 Kg

g 9.81 m/sec2
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4.2.1 Procedure

Lengths are simply measured using an Imperial English tape measure then converted into

metric units. The center of mass of the sensor mast system is calculated using Equation 4.2.

lp = mrodl

2Mp
+
mquad

(
l + lquad

2

)
Mp

(4.2)

4.2.2 Parameter values

Table 4.2 shows the measured length parameters.

Table 4.2 Length parameters
length parameter value unit

lquad 0.0508 m

l 1.8288 m
lmot 0.0413 m

rw 0.03 m

rrod 0.0095 m

Rr 0.1143 m

4.3 Moments of Inertia

Most of the moments of inertia parameters for this system are calculated because directly

measuring them would create safety issues or the estimated moment of inertia produced good

enough results that direct measurement was unnecessary. Equation 4.3 through Equation 4.6

show how these moments of inertia are calculated. A few moments of inertia were measured,

those values can be found in Table 4.3.

JzzR = 1
2McR

2
r (4.3)

Jxx = Jyy = Jmbody +mquad

(
l + lquad

2 − lp
)2

+ mrod

12 l2 +mrod (l − lp)2 (4.4)

Jzz = 1
2mrodr

2
rod + Jquadzz (4.5)

PJ =


Jxx 0 0

0 Jyy 0

0 0 Jzz

 (4.6)
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Table 4.3 Moment of inertia parameters parameters
moment of inertia parameter value unit

Jmbody 0.00449 Kg m2

Jquadzz 0.00878 Kg m2

4.4 Quad motor parameters

The quadrotor motor parameters are identified in the same manor presented in [8].

4.4.1 BLDC motor parameters

The only parameter not identified as in [8] for the quadrotor motor parameters is J̃r. It

was found that the audio method presented for that motor system didn’t work well for this

set of motors. Instead we obtained a Vernier Dual Range Force Sensor DFS-BTA set to 10N

sensitivity as the propeller was not expected to produce more than 10N of force. this was then

connected to a LabPro and data acquisition using the LoggerPro software. Data of the motor

going from 50% command to 100%command was taken, then using the force measurements the

time rise was calculated. From there the time rise of the motor was used to calculate J̃r as in

[8]. Equation 4.7 shows this calculation.

J̃r = τ

KVKQRm
(4.7)



www.manaraa.com

33

4.4.1.1 Procedure for measuring time rise of the motor

1. Connect motor propeller system to Vernier Dual-Range Force Sensor and set the sensi-

tivity to ±10N [23]

2. Connect the force sensor to the LabPro interface [24]

3. Connect the CLB 2 to a computer with LoggerPro software installed [25]

4. Open up LoggerPro and configure the session for the force sensor

5. Capture data accelerating the motor from barley on to around 50% command

6. Plot the captured data and manually estimate the time rise

7. calculate J̃r

4.4.1.2 Resulting parameters

The results of the time rise measurements for the motor propeller system is shown in

Figure 4.1. All of the parameters for the propeller and motor system are shown in Table 4.4.

Figure 4.1 Time rise data capture.
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Table 4.4 Quadrotor motor parameters
Quadrotor motor parameters value unit

τ 0.06 seconds

KV 96.3422 rad/V sec

KQ 96.3422 A/Nm

Rm 0.2340 Ω
if 0.422 A

Vquad 14.8 V

umax 30000 [none]
KT 7.9× 10−6 mKg

Kd 2.3765× 10−7 m2Kg

δT 2.8194× 10−4 Kg/sec

4.5 Wheel Parameters

The wheel parameters can be obtained in the data sheets for the motor, [14], the H-bridge,

[13], and the gear box, [15]. The motor resistance is the sum of the resistance of the motor and

the resistance of the H-bridge itself. The parameters KVw and KQw needed to be re-identified

because the wheel motors are bushed DC motors that have worn brushes. The H-bridge dead

zone and slope also needed to be identified.

4.5.1 Velocity coefficient identification

This was accomplished by supplying a voltage, using a power supply, to each motor; and

using an oscilloscope to measure the steady-state velocity of each motor by measuring the

encoder period. Then use least-squares to find the slope of the first order line relating the

velocity to voltage input. This slope is the new KVw and KQw .

4.5.1.1 Procedure

1. Connect one motor to power supply

2. Start the voltage at zero and increase by 0.5V

3. Measure the period of the encoder signal using an oscilloscope, [26].

4. Repeat step 3 four times to get an average period.
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5. Convert the period of the encoders to motor speed.

6. Repeat steps 2-5 until the voltage supplied reaches the maximum voltage expected

7. Repeat steps 1-6 for the other wheel motors

8. Convert speed data to RPMs

9. Use least square to determine the line y = ax+ b to relate voltage command to RPMs.

10. The value a is KVw in RPM/V for use in the model this is converted to rad/ (V s)

4.5.1.2 Results

The results of measuring KVw are shown in Figure 4.2. This data identified KVw as

1218.8 RPM/V . While is only about 2% larger than the datasheet value of 1190 RPM/V

but because this is a slope of how fast the wheel will spin per volt applied it makes a difference

in the model.
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Figure 4.2 Measurement results for identifying KVw of the wheel motors.

4.5.2 H-bridge parameters

The H-bridge parameters were identified by giving open loop commands to the H-bridge

and using the HP Oscilloscope from [8] to measure the output wave to determine the effective

voltage seen by the motor then find the relationship between input PWM command and the

output voltage seen by the motor. This produces a line with a linear slope and a non-zero

y-intercept. The y-intercept constant is used to figure out where to set the dead zone range.

4.5.2.1 Procedure

1. Setup code to run PWM generation in open loop and disconnect the motor

2. Connect a 2 cell Lipo battery to the H-Bridge battery input and oscilloscope, [26], to the

H-bridge output
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3. Increase the command to the H-bridge and measure the voltage and duty cycle of the

H-bridge output

4. Repeat step 3 until the maximum command is reached

5. Use least squares to calculate the slope of the H-bridge and the dead zone of the H-bridge

4.5.2.2 Results

Figure 4.3 H-bridge parameter identification results.

4.5.3 Rolling Resistance

The rolling resistance coefficient is determined by giving two of the wheels, so the cart only

moves in one direction, an open loop PWM command while the sensor mast isn’t attached to

the cart, and measure the steady state speed of cart. For this test the cart was placed on a table

covered with a section of the floor material the cart normally drives over. This allowed steady

state wheel velocity to be measured more easily using the same tachometer. Then calculate

what the excess force the wheels are producing at steady state. Then µr can be found through

Equation 4.8. This is repeated several times and then average to find the best coefficient.

It turns out that there was enough of a difference between the two axes to have a separate
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coefficient for both the x and y direction and the use the average of the two coefficients for

yaw. This difference wouldn’t normally be the case but one of the motors has a slightly bent

axle it tougher to move in that direction.

µr = Fexcess
2Mcg

(4.8)

4.5.3.1 Procedure

1. Setup the robot to run in open loop with a constant command on a flat surface

2. Measure the battery voltage supplied to the H-bridge

3. Calculate the steady-state speed from the test

4. Calculate the force being produced by the wheels at the steady-state velocity

5. Use the force to calculate the rolling resistance coefficient

4.5.4 Parameters

The full set of wheel parameters is listed in Table 4.5.

Table 4.5 Wheel motor parameters
Wheel motor parameters value unit

KVw 127.6347 rad/V sec

KQw 127.6347 A/Nm

Rmw 1.4075 Ω
Vbat 7.4 V

umax 65535 [none]
µrx 0.1014 [none]
µry 0.1014 [none]
µrψ 0.1014 [none]
Kg 14 [none]
ηm 0.87 [none]
ηg 0.80 [none]
aH 0.0040 [none]
uwg 256 [none]
udead 5632 [none]
Jm 4.8× 10−7 Kg m2
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4.6 Battery voltage

The system uses two batteries, a four cell lipo for the propeller system and a two cell lipo

for the wheels. For linearization and controller design the nominal battery voltage is used but

for simulation and comparison of real data the actual voltage needs to be measured for more

accurate simulation results.

4.6.1 Procedure for propeller motors

1. Setup code to run all four propellers at 50% throttle

2. Power off propellers

3. Connect multimeter to measure the voltage across one of the ESCs

4. Power on the propellers

5. Run the system at 50% throttle and measure the steady-state voltage during the test

4.6.2 Procedure for wheel motors

1. After test disconnect wheel battery from the system

2. Measure voltage of battery using multimeter

4.7 Complete parameter list

Table 4.6: All measured system parameters

Parameters value unit

M 2.761 Kg

mw 0.034 Kg

mquad 0.588 Kg

mrod 0.548 Kg

g 9.81 m/sec2
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Table 4.6 : continued

Parameters value unit

lquad 0.0508 m

l 1.8288 m

lmot 0.0413 m

rw 0.03 m

rrod 0.0095 m

Rr 0.1143 m

Jmbody 0.00449 Kg m2

Jquadzz 0.00878 Kg m2

τ 0.06 seconds

KV 96.3422 rad/V sec

KQ 96.3422 A/Nm

Rm 0.2340 Ω

if 0.422 A

Vquad 14.8 V

umax 30000 [none]

KT 7.9× 10−6 mKg

Kd 2.3765× 10−7 m2Kg

δT 2.8194× 10−4 Kg/sec

KVw 124.6165 rad/V sec

KQw 124.6165 A/Nm

Rmw 1.4075 Ω

Vbat 7.4 V

umax 65535 [none]

µrx 0.1562 [none]

µry 0.1765 [none]

µrψ 0.1663 [none]
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Table 4.6 : continued

Parameters value unit

Kg 14 [none]

ηm 0.87 [none]

ηg 0.80 [none]

aH 0.0040 [none]

uwg 256 [none]

udead 5632 [none]

Jm 4.8× 10−7 Kg m2
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CHAPTER 5. PID CONTROLLERS

For the purpose of verifying the model developed in Chapter 3 and Chapter 4 it was best

to start by designing simple PID’s. Because PID controllers can be hand tuned and refined

without the need for the explicit use of the model, the controllers can be developed independent

of the model and then tested against it. This allows for the model to be independently verified.

A total of five PID’s were designed, one to control each degree of freedom of the system. There

is one controller for the pitch and roll position of the pendulum arm. One controls the yaw

position of the entire system. The last two control the local body linear velocity of the cart.

The goal of the system of controllers are to track the cart’s linear velocity in x and y and to

track yaw position commands. Because the pendulum arm will eventually support sensors for

analyzing the surroundings of the vehicle it is desirable try to reject disturbances that stop the

pendulum from balancing vertically. Normally controller result plots would be placed along

with the controller design sections but because the performance of the system is dependent on

the other controllers the controller behavior plots will be presented at the end.

5.1 Pitch and roll controllers

The pitch and roll controllers need to track zero degrees in angular position. In order to

track angular position according to the model a PD controller would achieve this goal but the

model does not capture all aspects of the physical system. The model makes an assumption

that the center of mass is perfectly aligned in x and y but in reality it is slightly off center

so a PD controller won’t actually track zero angular position. Therefore, it is necessary to

design PID controllers to allow the system to track zero angular position. This is an important

observation for designing future controllers. This mismatch between the system and the model
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won’t be an issue once sensors are added to the pendulum arm as it will be easy to figure

out where the center of mass of the pendulum system is, but without the sensors the center

of mass will vary over time due too small and changing asymmetries of the physical system

such as moving the location of ESCs and wires. This makes it difficult to characterize the

center of mass of the current pendulum system. Using a PID controller will allow the model

and the physical system behavior to match with only slight deviation in terms of the controller

commands. The two axes are more or less symmetric so the same PID values are used for both

axes.

The controllers were initially designed with the pendulum on a stationary base confined to

one axis in order to simplify the controller design process. Once a stabilizing controller was

found manually it was then compared against the model. Once the model had been sufficiently

refined the model was then used to further adjust the PID controller design. Table 5.1 provides

the constants for the final PID controller.

Table 5.1 PID controller values for pitch and roll.
Controller parameter value units

Pφ/θ 48000 [none]
Iφ/θ 18000 [none]
Dφ/θ 21000 [none]
Nφ/θ 16 [none]
fs 100 Hz

5.2 Linear velocity control

The goal for controlling the linear velocity of the vehicle is to track the given velocity

command quickly without causing the vehicle to slip. The linear velocity controllers were

designed before the heading controller. Because of slight motor differences, the ground vehicle

cannot hold a heading without control. Therefore, x and y velocity controllers were designed

to control the body reference frame velocity. Initially, it was thought that a full PID controller

would be required. Due to the sensors available to the controller, the cameras can only measure

x and y position and the system needs to calculate velocity. Taking an additional derivative

will start to really amplify the measurement noise to the point where there is no way to
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compensate for the noise. The integral term is necessary to get the system to track a velocity

command due to the rolling resistance disturbance. The initial PID designs were done using

hand tuning methods in order to verify the model. After it became clear that the derivative

term wouldn’t help the controller performance it was decided to switch to a PI controller. It

was initially thought that the proportional term of the controller should be much larger than

the integral term because for most systems having a large integral term cause the system to

respond slower. After discussion it was realized that designing a PI controller for velocity is

equivalent to designing a PD controller for position control with a ramp input. This makes the

weighting of the controller make much more sense than it originally did. The final controller is

shown in Table 5.2.

Table 5.2 PID controller values for x and y velocity.
Controller parameter value units

P Rẋ/Rẏ 100000 [none]
I Rẋ/Rẏ 380000 [none]
fs 100 Hz

5.3 Heading control

The heading (yaw) controller needs to be able to keep the robot pointed in the desired

direction. In order to accomplish this goal a PID controller will be required. The main reason

the integration term is needed in this case is the rolling resistance, which not only effects the

x and y motion but it also effects the heading of vehicle. RADA needs the integration term

to help correct for small errors in yaw over time. The second reason that the integral term in

useful for this controller due to the slight discrepancy in motor parameters that could cause

the vehicle to yaw when it starts to accelerate. This is something that the model presented in

Chapter 3 wouldn’t account for. This influenced how the controller was tuned. The model was

used to design an initial controller, but from there hand tuning needed to be done in order to

make sure the controller was strong enough to prevent the vehicle from yawing too much at the

beginning of linear motion. It ended up that the original weighting ratios were acceptable but

the overall gain needed to be increased. The cost of this gain increase is that tracking steps
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become more difficult for the controller but they can still track a ramp heading command. The

final controller weights are shown in Table 5.3.

Table 5.3 PID controller values for yaw postion.
Controller parameter value units

Pψ 40000 [none]
Iψ 21800 [none]
Dψ 14500 [none]
Nψ 16 [none]
fs 100 Hz

5.4 Control mixing

Due to the fact that the linear velocity PID controllers are designed to work on the body

linear velocities of the system the mixing matrix from Equation 3.37 is not quite the correct

mixing matrix for the PIDs. Instead the mixing is simplified by letting ψ always equal zero.

This simplification is represented by Equation 5.1.

u1

u2

u3

u4

uw1

uw2

uw3

uw4



=



0 1 0 0 0

−1 0 0 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 −1 −1 0

0 0 −1 0 1

0 0 −1 1 0

0 0 −1 0 −1





uφ

uθ

uψ

ux + 6656 sign (ẋref )

uy + 6656 sign (ẏref )


+



unom

unom

unom

unom

0

0

0

0



(5.1)

5.5 Controller testing

Controller testing was done systematically with a set procedure. What made this possible

was a data analysis tool developed by the RADA Senior Design team from 2014-2015, [9].
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5.5.1 Procedure

1. Setup the system and run the test.

2. Record the battery voltage seen by the quad ESCs and H-bridges.

3. Process data using MATLAB.

4. Setup the Simulink simulation of the non-linear system using the measured battery voltage

and the reference commands recorded from the test data.

5. Run the simulation for the same length of time as the test.

6. Store the data from the simulation for latter use before plotting.

7. Plot the system behavior and the simulation behavior over each other and compare results.

5.5.2 Results

The results of testing the controllers in tandem in order to see if the controllers are able to

achieve the total goals of all the controller together. Figure 5.1 show the total system behavior,

and Figure 5.2 and Figure 5.3 show zoomed in versions of the plots.

The x and y velocity controllers settle out from a step in velocity to a non-zero velocity in

about 0.9 seconds while stopping only takes 0.13 seconds. Both the pitch and roll axes have a

disturbance peak amplitude 1.6◦ for accelerating from zero to 35 cm/s and 1.8◦ when stopping.

The disturbance rejection time is measured as the time when the system is within 1% of the

maximum of the disturbance. The pitch and roll axes take about 5.8 seconds from the start of

the disturbance.

Overall the system and model behavior are similar and match very well in general. There

are some small differences between the two systems mostly some additional oscillations and

vibrations from actual pendulum. Overall the model behaves well enough to design model

based controllers. More advanced controllers are necessary because the disturbance seen by

the pitch and roll axes are rejected slowly and it is desirable to reduce time to reject the

disturbances.
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Figure 5.1 PID controller comparison.
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Figure 5.2 PID controller comparison zoomed in x-θ.

Figure 5.3 PID controller comparison zoomed in y-φ.
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CHAPTER 6. LQG CONTROLLER

It was decided to design a linear quadratic gaussian (LQG) controller, state estimator and

regulator system, because the PID controller could be improved by increasing the speed of

disturbance rejection by the pendulum and decrease amplitudes of these disturbances. Initially

a linear quadratic regulator (LQR) was designed but this controller could not track commands

for the same reason PD controllers would not have been sufficient. Then a linear quadratic

integral (LQI) regulator was designed next. This would allow the regulator to track command

inputs but this didn’t work either because simply using a digital derivative to calculate the

angular velocity states were not good enough to improve the system performance over the

PIDs. Finally, it was determined that an estimator would need to be designed, so an LQG

controller was the best option because it can simultaneously design an optimal linear regulator

and an optimal linear estimator simultaneously for the best performance. The LQG controller

can also be modified to track reference inputs. This will allow an LQG controller to fulfill all

of the performance goals for the system.

6.1 Model linearization

The non-linear model described in Chapter 3 was linearized using the normal partial deriva-

tive method. For this system, it was determined to split the inputs into two sets. The first is

the user defined inputs that can be used to control the system, U , defined by Equation 6.2,

and the set of disturbance inputs, w, described in Equation 6.3. Where the disturbance inputs

are defined by Equation 6.4. The linearized system has states Λ, defined by Equation 6.1.
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Remember that for the linearization, controller design, and estimation; the quad motor system

is assumed to reach the steady-state commanded velocity infinitely quickly and so the motor

states are reduced from the system.

Λ =



φ

θ

ψ

ẋ

ẏ

φ̇

θ̇

ψ̇



(6.1)

U =



uφ

uθ

uψ

ux

uy


(6.2)

w =


wψ

wx

wy

 (6.3)

wψ = sign
(
ψ̇
)

wx = sign
(
Rẋ
)

wy = sign
(
Rẏ
) (6.4)

The main purpose of including the disturbance vector is that the sign function is discontinuous

for an input of zero. This means that the system could not be linearized around zero velocity

and for at least ψ̇ it is necessary to use a linearization point of zero. It is also desirable to

linearize the system at zero velocity in both the x and y axes because otherwise a piecewise

linearization would be required for the system to be able to effectively move forward, backwards,
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and stop. This would also require the design of three controllers and estimator systems. This

would not be ideal as this type of linearization would require three times the memory for the

controller plus additional computational overhead to handle the context switching between

the three modes. By using the sign functions as disturbances the discontinuity issue is solved

for linearization purposes. As discussed in Chapter 3.26 a continuous evaluation of the sign

function is used for simulation. This is not ideal for linearization due to the large slope of

this function at zero and it still does not have a nice evaluation at zero. With this out of the

way the system can now be linearized around the equilibrium point (Λ∗, U∗, w∗), describe by

Equation 6.5.

Λ∗ =



0

0

0

0

0

0

0

0



, U∗ =



0

0

0

0

0


, w∗ =


0

0

0

 (6.5)

The resulting linearized Equation will look like the system of equations in Equation 6.6.

Λ̇ = AΛ +BU +Ww

Y = CΛ +DUU +Dww
(6.6)
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Where A is represented by Equation 6.7, B by Equation 6.8, W by Equation 6.9, C by

Equation 6.10, DU by Equation 6.11, and Dw by Equation 6.12.

A =



0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 2.8489 0 −3.9536 0 0 0 0

−2.8489 0 0 0 −3.9536 0 0 0

7.7252 0 0 0 2.4127 0 0 0

0 7.7252 0 −2.4127 0 0 0 0

0 0 0 0 0 0 0 −11.6817



(6.7)

B =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−3.5071× 10−7 2.1804× 10−5 0 0.0001 0

−2.1804× 10−5 −3.5071× 10−7 0 0 0.0001

0.0004 6.1693× 10−6 0 0 −7.5686× 10−5

−6.1693× 10−6 0.0004 0 7.5686× 10−5 0

0 0 0.0032 0 0



(6.8)

W =



0 0 0

0 0 0

0 0 0

0 −1.2838 0

0 0 −1.2838

0 0 0.7834

0 −0.7834 0

−4.1482 0 0



(6.9)
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C =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0


(6.10)

DU =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(6.11)

Dw =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


(6.12)

It is straight forward enough to show that the controllability and observability matrices

are both full rank making the system both observable and controllable. The linearized system

can now be used to design linear regulators and estimators. The outputs of the system are

assumed to be the angular position of the pendulum, yaw of the vehicle, and the global linear

velocities of the vehicle. The camera system being used to measure the position of both the

pendulum and the vehicle, but it cannot directly measure velocities. It was determined that

the calculations of ẋ and ẏ are good enough not to require filtering either velocity calculation.

However, the angular velocity calculations are not good enough, therefore the angular velocity

calculation need to be filtered. For linear controller design this means that an estimator is

needed. This leads to the need to design a LQG controller as opposed either a LQR or LQI.
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6.2 Controller design

Early linear regulator designs had issues with being able to drive the eigenvalues of the

system by changing the gains of the state weighting matrix Q. This shouldn’t happen in a

controllable system. It turns out that MATLAB 2014b has an issue with calculating regulators

when the A and B matrices have large magnitude differences. Therefor the B matrix needs to

be gained, in this case, so that the regulator calculation will work appropriately. The output

regulator will also need to be gained by the same value to get the regulator for the actual

system. In Equation 6.13 the max and min functions refer to the MATLAB max and min

functions. In MATLAB the max function when operating on a 2D matrix returns the largest

value in each column. So effectively this equation taking the minimum of the maximum is

finding the smallest value of the set of the largest column values.

GB = 1
min (max |B|) = 8063 (6.13)

The system still needs to be digitized before a controller and estimator can be designed. The

system is sampled at 100 Hz using the standard equations to digitize the system demonstrated

by Equation 6.14 and Equation 6.15, where T = 0.01. Equation 6.15 is also used to digitize

the disturbance input matrix W except that GB is set one.

Ad = eAT (6.14)

Bd = GB

∫ T

0
eA(T−τ)Bdτ (6.15)

For now, the estimator will not use the disturbance inputs in the design. If the estimator

doesn’t produce good enough estimations of the states of the system it would be good to try

and add the disturbance inputs into the estimation system.

As discussed previously it was decided to design an LQG controller capable of tracking the

outputs of this system. Using the MATLAB lqg function to design an LQG controller with

tracking given the digital state-space system, a state and input weighting matrix for regulation,

Qxu, a input and state weighting matrix for the estimator, Qwv, and an output weighting matrix

for tracking, QI . Selecting the weights for these matrices should be fairly straight forward.

Similar to Chapter 7.3.1 of [8], it was believed that the weights could be chose to match the
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inverse square of the maximum desired deviation. This could not be the used because some of

the limitations of the system, like the noise floor of the cameras. This would cause an issue on a

real system so the weights had to be found more through tuning than using the desired behavior

of the system to determine the weights. Through much simulation and experimentation the

weights in Equation 6.16 were found to produce a controller and estimator system that had

adequate performance to meet the desired controller goals of RADA. The matrices Qxu and

Qwv are further subdivided into two block diagonal matrices, while this doesn’t necessarily

need to be the case there was found to be no need to cross weight the actuator inputs with

the states of the system. The same can be said of cross weighting the outputs of the linear

model and the estimated state outputs that are feed into the regulator. These sub-matrices are

defined in Equation 6.17 through Equation 6.20.

Qxu =

Qx 0

0 Qu


Qwv =

Qw 0

0 Qv



QI =



800 0 0 0 0

0 800 0 0 0

0 0 500 0 0

0 0 0 60000 0

0 0 0 0 60000



(6.16)

Qx =



120 0 0 0 0 0 0 0

0 120 0 0 0 0 0 0 0

0 0 1800
π2 0 0 0 0 0

0 0 0 500 0 0 0 0

0 0 0 0 500 0 0 0

0 0 0 0 0 25 0 0

0 0 0 0 0 0 25 0

0 0 0 0 0 0 0 0



(6.17)
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Qu =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(6.18)

Qw =



0.2 0 0 0 0 0 0 0

0 0.2 0 0 0 0 0 0 0

0 0 0.2 0 0 0 0 0

0 0 0 0.2 0 0 0 0

0 0 0 0 0.2 0 0 0

0 0 0 0 0 25 0 0

0 0 0 0 0 0 25 0

0 0 0 0 0 0 0 25



(6.19)

Qv =



10 0 0 0 0

0 10 0 0 0

0 0 100 0 0

0 0 0 100 0

0 0 0 0 100


(6.20)

The resulting system described by Equation 6.21, where Λest is the estimated state vector

including tracking states, Alqg represents the internal estimator based off of the state estimation,

Blqg is matrix relating to the input of the estimation system, Yref is the vector of reference

inputs, Y is the set of measurements from the camera system, U is the set of inputs to the

mixing matrix for the actuators, Clqg is the quadratic regulator gained by Equation 6.13 in

order to undo the gained B matrix in the system the LQG regulator was designed for, Dlqg

is regulation for the system relating the current inputs to outputs, k is the current sample

number, and T is the sample period of the controller.
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Λest [kT + 1] = AlqgΛest [kT ] +Blqg

Yref [kT ]

Y [kT ]


U [kT ] = ClqgΛest [kT ] +Dlqg

Yref [kT ]

Y [kT ]


(6.21)

The matrix Alqg is defined by Equation 6.22, due to the size of the matrix it couldn’t fit on

one page and needed to be split into two sub-matrices, Alqg1 and Alqg2 . The matrix Alqg1 is

represented in Equation 6.23 and the matrix Alqg2 is represented by Equation 6.24.

Alqg =
[
Alqg1 Alqg2

]
(6.22)

Alqg1 =



0.7762 0 0 0 0.0030 0.0091 0

0 0.7762 0 −0.0030 0 0 0.0091

0 0 0.9267 0 0 0 0

0 −0.0475 0 0.6865 0 0 −0.0057

0.0475 0 0 0 0.6865 0.0057 0

−2.1157 0 0 0 0.1645 0.8202 0

0 −2.1157 0 −0.1645 0 0 0.8202

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



(6.23)
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Alqg2 =



0 0.0039 0 0 0 −0.0074

0 0 0.0039 0 0.0074 0

0.0086 0 0 0.02532 0 0

0 0 0.02864 0 2.0985 0

0 −0.02864 0 0 0 2.0985

0 0.7827 0 0 0 −1.4658

0 0 0.7827 0 1.4658 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(6.24)

The matrix Blqg is defined by Equation 6.25, due to the size of the matrix it couldn’t fit on one

page and needed to be split into two sub-matrices, Blqgref and Blqgmeas . The matrix Blqgref

shown in Equation 6.26 is the portion of the estimator input that relates to the reference inputs.

The matrix Blqgmeas shown in Equation 6.27 is the portion of the estimator input related to

the state measurements.

Blqg =
[
Blqgref Blqgmeas

]
(6.25)
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Blqgref =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.0100 0 0 0 0

0 0.0100 0 0 0

0 0 0.0100 0 0

0 0 0 0.0100 0

0 0 0 0 0.0100



(6.26)

Blqgmeas =



0.2207 0 0 0 −0.0022

0 0.2207 0 0.0022 0

0 0 0.0557 0 0

0 0.0264 0 0.0205 0

−0.0264 0 0 0 0.0205

1.4947 0 0 0 −0.0050

0 1.4947 0 0.0050 0

0 0 0.0524 0 0

−0.0100 0 0 0 0

0 −0.0100 0 0 0

0 0 −0.0100 0 0

0 0 0 −0.0100 0

0 0 0 0 −0.0100



(6.27)
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The matrix Clqg, Equation 6.28, relates the estimate state matrix Λest to the actuator

commands U . Like both Alqg and Blqg this matrix had to be split up into three sub-matrices:

Clqg1 , Equation 6.29; Clqg2 , Equation 6.30; and Clqg3 , Equation 6.31.

Clqg =
[
Clqg1 Clqg2 Clqg3

]
(6.28)

Clqg1 =



−180351.7108 2900.8682 0 −84.1008 −5228.6856

−2900.8682 −180351.7108 0 5228.6856 −84.1008

0 0 −114211.0493 0 0

0 −8590.5627 0 −210052.2678 0

8590.5627 0 0 0 −210052.2678


(6.29)

Clqg2 =



−47689.2319 767.0577 0 206607.2323

−767.0577 −47689.2319 0 3323.1752

0 0 −5587.5173 0

0 3614.7004 0 0

−3614.7004 0 0 12808.0790


(6.30)

Clqg3 =



−3323.1753 0 −803.5457 −49957.7480

206607.2323 0 49957.7480 −803.5457

0 164133.1219 0 0

−12808.0790 0 1716866.3198 0

0 0 0 1716866.3198


(6.31)

Finally, Dlqg relates the current reference inputs and system measurements to the actuator

commands, show in Equation 6.32.

Dlqg =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


(6.32)
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The controller was implemented in C++ code and run on the host processor on the ground

vehicle in order to test and compare the system behavior and non-linear model simulation. The

same procedure described in Chapter 5.5.1.

6.3 Results

After testing the controller on the current system and comparing it with the model, the

data was processed. Figure 6.1 was produced; it compares the actual system behavior to that

of the non-linear system. The blue dotted line represents the simulation and the red dotted

line represents the actual system behavior. Figure 6.2 shows a zoomed in view of the x and

pitch, θ, axis. While Figure 6.3 shows a zoomed in view of the y and roll, φ, axis.

Overall the system takes about 1.5 seconds to linearly accelerate in x or y from zero to

±35 cm/s, while it only takes about 0.5 seconds to linearly decelerate from ±35 cm/s in either

x or y. The pitch and roll axes have a maximum disturbance amplitude of 1◦ when accelerating

from zero to ±35 cm/s. When stopping the pitch and roll disturbances max out at about 2◦

and it only takes about 2.5 seconds to reject this disturbance. Most of the difference between

the simulation and implementation of the controller are some oscillations due to vibrations and

a few other un-modeled dynamics. Overall the system behavior is acceptable and much faster.

The model could probably be refined more but this controller demonstrates that the model is

good enough to design model based controller and the simulations behave reasonable well.

6.3.1 Comparison to PID controller

The LQG controller performs better in controlling the pendulum because it only takes about

2.5 seconds to reject the disturbance caused by accelerating the cart where the PIDs took 5.8

seconds to reject the disturbance, an increase in speed by about 57%. The magnitude of this

disturbance when accelerating from zero to ±35 cm/s is reduced by about 0.6◦ or 62.5% of

the PID disturbance; but increases by 0.2◦ or 111.11% of the PID disturbance, when the cart

comes to a stop. While the cart now takes 1.5 seconds to accelerate from zero to ±35 cm/s

compared to 0.9 seconds that it took the PID controllers to accelerate the system or 166.67% of

the acceleration time of the PID. The cart takes 0.5 seconds to come to a stop under the LQG
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controller compared to the 0.13 seconds it took the cart to stop using the PID controller. This

is a 384.6% change in the stopping time. The increase in the carts acceleration and stopping

time isn’t too worrying because the cart is meant to travel long distances between stops so

this time difference isn’t a big deal. The improved acceleration response of the pendulum is

important because the system will be able to reject pendulum disturbance faster and keep the

pendulum very near vertical most of the time.

Figure 6.4 through Figure 6.7 show a comparison of the system behavior in simulation and

implementation of both the PID and LQG controllers where data has been shifted so that the

simulation and implementation results align for both systems. In these figures the red dots

represent the actual implementation of the LQG, the green dots represent the data from the

actual PID implementation, the blue dots represent the LQG simulation data, the magenta dots

represent the PID simulation data, and the black dashed line represents the reference velocity.

There is one plot each for comparing the acceleration and stopping data for both axes as this

was the easiest way to make both responses line up. Finally, the testing each controller one

right after the other and swapping wheel and propeller batteries. This way both tests would

have reasonably similar voltages so the comparison is valid.
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Figure 6.1 LQG controller comparison.
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Figure 6.2 LQG controller comparison zoomed in x-θ.

Figure 6.3 LQG controller comparison zoomed in y-φ.
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Figure 6.4 Comparison of the LQG and PID in x-θ when accelerating.

Figure 6.5 Comparison of the LQG and PID in x-θ when stopping.
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Figure 6.6 Comparison of the LQG and PID in y-φ when accelerating.

Figure 6.7 Comparison of the LQG and PID in y-φ when stopping.
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CHAPTER 7. SEPARATE LQG CONTROLLER DESIGNS

In Chapter 6 a LQG controller was designed that operated on the whole system at once.

There are some situations in which this may not be desirable. Because this system’s running

time will be limited by the capacity of the quadrotor battery, and there is only so much space

available for batteries, it may be desirable to design a system that allow quadrotors to land

on top of the sensor arm, articulate its motors to balance the sensor arm and leave when its

batteries get too low. This would require controllers to be designed that decouple the ground

robot control and pendulum control. One way to accomplish this is to divide the system into

the ground robot, the states (ψ, ẋ, ẏ, ψ̇), and the pendulum, the states (φ, θ, φ̇, θ̇). Both of

these new systems would only have the inputs related directly to those states removing any

knowledge of the cross-coupling of the two systems.

Overall the design of these separate LQG controllers started by splitting the linear system

into two subsystems, one for the pendulum and one for the ground vehicle. Then each subsystem

is sampled at 100 Hz. Next an LQG controller is designed for the pendulum system. This

controller is tested with open loop ground robot commands. Next a LQG controller is designed

for the ground vehicle and tested with the LQG controller for the pendulum system.

7.1 Subsystem division

The system is divided into two subsystems, with the linearization of each subsystem done

about the same points as in Chapter 6.1.

The first is the pendulum system represented by Equation 7.1. Where pendulum’s states

are defined by Equation 7.2 and the pendulum’s inputs are defined by Equation 7.3.
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Λ̇pen = ApenΛpen +BpenUpen

Ypen = CpenΛpen +DpenUpen

(7.1)

Λpen =



φ

θ

φ̇

θ̇


(7.2)

Upen =

uφ
uθ

 (7.3)

Where Apen is represented by Equation 7.4, Bpen by Equation 7.5, Cpen by Equation 7.6, and

Dpen by Equation 7.7.

Apen =



0 0 1 0

0 0 0 1

7.7252 0 0 0

0 7.7252 0 0


(7.4)

Bpen =



0 0

0 0

3.8356× 10−4 6.1693× 10−6

−6.1693× 10−6 3.8356× 10−4


(7.5)

Cpen =

1 0 0 0

0 1 0 0

 (7.6)

Dpen =

0 0

0 0

 (7.7)

The second system is the ground robot system which is represented by Equation 7.8. Where

the robot’s states are defined by Equation 7.9, its inputs are defined by Equation 7.10, and the

disturbance inputs are the same as w originally defined in Chapter 6.1.

Λ̇bot = AbotΛbot +BbotUbot +Wbotw

Ybot = CpenΛbot +DUbotUbot +Dwbotw
(7.8)
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Λbot =



ψ

ẋ

ẏ

ψ̇


(7.9)

Ubot =


uψ

ux

uy

 (7.10)

Where Abot is represented by Equation 7.11, Bbot by Equation 7.12, Wbot by Equation 7.13,

Cbotby Equation 7.14, DUbot by Equation 7.15, and Dwbot by Equation 7.16.

Abot =



0 0 0 1

0 −3.9536 0 0

0 0 −3.9536 0

0 0 0 −11.6817


(7.11)

Bbot =



0 0 0

0 1.2402−4 0

0 0 1.2402−4

0.0032 0 0


(7.12)

Wbot =



0 0 0

0 −1.2838 0

0 0 −1.2838

−4.1428 0 0


(7.13)

Cbot =


1 0 0 0

0 1 0 0

0 0 1 0

 (7.14)

DUbot =


0 0 0

0 0 0

0 0 0

 (7.15)
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Dwbot =


0 0 0

0 0 0

0 0 0

 (7.16)

With both subsystems defined LQG controllers can now be designed for both subsystems,

starting with the unstable pendulum system.

7.2 LQG controller for the pendulum system

The linear pendulum subsystem is digitized using the same process used in Chapter 6.2. For

the purposes of this design, the gain GB is replaced with the gain GBpen shown in Equation 7.17.

GBpen = 2607 (7.17)

The weighting matrices for the pendulum LQG controller design were initially based off the

controller designed in Chapter 6.2, but these weights were able to be strengthened after some

experimentation. The weighting matrices used for the pendulum’s LQG are shown in Equa-

tion 7.18. The resulting controller takes the form of Equation 7.19.

Qxupen =



1200 0 0 0 0 0

0 1200 0 0 0 0

0 0 300 0 0 0

0 0 0 300 0 0

0 0 0 0 1 0

0 0 0 0 0 1



Qwvpen =



0.2000 0 0 0 0 0

0 0.2000 0 0 0 0

0 0 25 0 0 0

0 0 0 25 0 0

0 0 0 0 100 0

0 0 0 0 0 100


QIpen =

8500 0

0 8500



(7.18)
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Λpenest [kT + 1] = ApenlqgΛpenest [kT ] +Bpenlqg

Ypenref [kT ]

Ypen [kT ]


Upen [kT ] = CpenlqgΛpenest [kT ] +Dpenlqg

Ypenref [kT ]

Ypen [kT ]


(7.19)

The matrix Apenlqg is represented by Equation 7.20.

Apenlqg =



0.8808 0 0.0090 0 0.0041 0

0 0.8808 0 0.0090 0 0.0041

−1.2163 0 0.8039 0 0.8285 0

0 −1.2163 0 0.8039 0 0.8285

0 0 0 0 1 0

0 0 0 0 0 1


(7.20)

Matrix Bpenlqg is shown by Equation 7.21.

Bpenlqg =



0 0 0.1159 0

0 0 0 0.1159

0 0 0.5589 0

0 0 0 0.5589

0.0100 0 −0.0100 0

0 0.0100 0 −0.0100


(7.21)

Equation 7.22 defines the matrix Cpenlqg .

Cpenlqg =

−191457.5248 3079.4999 −51207.6131 823.6492 215924.1054 −3473.0326

−3079.4999 −191457.5248 −823.6492 −51207.6131 3473.0326 215924.1054


(7.22)

Dpenlqg =

0 0 0 0

0 0 0 0

 (7.23)

This controller can now be tested while giving the ground robot open-loop commands.

7.2.1 Pendulum LQG with open-loop robot results

The system was tested under an open-loop wheel command of 26880. Otherwise the same

testing procedure was used from Chapter 5.5.1 in order to compare this test to a corresponding
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simulation. The results of this test are shown in Figure 7.1. The peak disturbance in θ is

about 2.4◦ when the system is accelerating from a stop and takes about 3.81 seconds to reject

the disturbance. When the cart is stopping the peak disturbance in pitch is about 3.2◦ and

it took the system about 3.17 seconds to reject this disturbance. This is faster than the PID

controller but slower than the full system LQG controller. The peak disturbance is larger

for this controller than either the PID controller set or the full system LQG controller. It

makes sense that a subsystem LQG controller would be slower than the full system LQG

controller, as it has less information about the disturbance than the full system controller. It

also makes sense that this controller would reject the disturbance caused by the cart stopping

faster because the disturbance is a shorter duration. It is hard to judge the peak disturbance

of the pendulum under this controller as the cart is going faster than it was with the previous

controllers presented in Chapter 5 and Chapter 6. A better comparison will be made after

the cart is also controlled with its own subsystem LQG controller. The continued presents of

oscillations in the pitch data shouldn’t be surprising as splitting the controller doesn’t change

that the model doesn’t perfectly capture every detail of the system.
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Figure 7.1 LQG control of the pendulum with open-loop cart commands.

7.3 Ground robot LQG controller design

The linear ground robot subsystem is digitized using the same process used in Chapter 6.2.

For the purposes of this design, the gain GB is replaced with the gain GBbot shown in Equa-

tion 7.24.

GBbot = 8063 (7.24)

The weighting matrices for the ground robot LQG controller design was initially based off the

controller designed in Chapter 6.2, but these weights were strengthened after some experimen-

tation. The weighting matrices used for the pendulum’s LQG are shown in Equation 7.25.
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Qxubot =



1800
π 0 0 0 0 0 0

0 700 0 0 0 0 0

0 0 700 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



Qwvbot =



0.2000 0 0 0 0 0 0

0 0.2000 0 0 0 0 0

0 0 0.2000 0 0 0 0

0 0 0 25 0 0 0

0 0 0 0 10 0 0

0 0 0 0 0 10 0

0 0 0 0 0 0 100



QIbot =


500 0 0

0 60000 0

0 0 60000



(7.25)

The resulting controller takes the form of Equation 7.26. The matrix Abotlqg is represented by

Equation 7.27.

Λbotest [kT + 1] = AbotlqgΛbotest [kT ] +Bbotlqg

Ybotref [kT ]

Ybot [kT ]


Ubot [kT ] = CbotlqgΛbotest [kT ] +Dbotlqg

Ybotref [kT ]

Ybot [kT ]


(7.26)
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Abotlqg =



0.8273 0 0 0.0086 0.0253 0 0

0 0.5865 0 0 0 2.0599 0

0 0 0.6667 0 0 0 2.0599

−3.7496 0 00.7207 4.9664 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



(7.27)

Matrix Bbotlqg is defined by Equation 7.28.

Bbotlqg =



0 0 0 0.1551 0 0

0 0 0 0 0.1000 0

0 0 0 0 0 0.0198

0 0 0 0.2938 0 0

0.0100 0 0 −0.0100 0 0

0 0.0100 0 0 −0.0100 0

0 0 0.0100 0 0 −0.0100



(7.28)

Cbotlqg is defined by Equation 7.29. The matrix is too large to fit on a page so the matrix is

further subdivided in to matrix Cbotlqg1
, Equation 7.30, and matrix Cbotlqg2

, Equation 7.31.

Cbotlqg =
[
Cbotlqg1

Cbotlqg2

]
(7.29)

Cbotlqg1
=


−114211.0493 0 0 −5587.5172

0 −225907.8938 0 0

0 0 −225907.8938 0

 (7.30)

Cbotlqg2
=


164133.1219 0 0

0 169380.7967 0

0 0 169380.7967

 (7.31)

DbotlqG =


0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 (7.32)
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Finally, Dbotlqg is defined by Equation 7.32. With the ground robot’s LQG controller defined

for both subsystem LQG controllers can be tested together.

7.4 Results

Figure 7.2 shows the subsystem LQG controllers behavior in the x-pitch axis. Figure 7.3

shows the subsystem LQG controllers behavior in the y-roll axis. Overall the pendulum con-

troller is able keep the peak disturbance to about 2.5◦ when accelerating from zero and when

the cart stops the peak disturbance is 2.6◦. The pendulum controller about 3.25 seconds to

reject both of these disturbances. While it takes the cart about 1.4 seconds accelerate from a

stop with an overshoot of 2 cm/s, it only takes 0.21 seconds to stop with no overshoot. Overall

the cart accelerates and stops faster when using the subsystem LQG control as opposed to the

full system LQG controller but slower than the PID controller set. This increase in speed of the

cart controller makes sense because the cart is no longer penalized by error in the pendulum

system. The cart subsystem’s velocity controller under this subsystem design causes overshoot

of the desired velocity. This is worse than both the PID and the full system LQG controller

presented in Chapter 5 and Chapter 6. Once again the pendulum rejects the disturbance faster

than the PID but slower than the full system LQG controller. This makes sense because the

full LQG controller has more information about the disturbance than the subsystem LQG con-

trollers do. The peak disturbance is worse than both the full system LQG and PID controllers.

The increase in disturbance magnitude isn’t caused by a decrease in propeller motor voltage

because the controller was tested under similar battery voltages to previous tests. This is most

likely due to the reduction in information that the pendulum LQG controller has compared to

the full system LQG controller that knows when the disturbance occurs.
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Figure 7.2 Test LQG control of each subsystem independently in x-θ.

Figure 7.3 Test LQG control of each subsystem independently in y-φ.
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CHAPTER 8. CONCLUSION

Modeling of physical systems is always difficult because it is difficult to tell when your model

and controllers are good enough to call the model complete. There is always going to be some

sort of unmodeled dynamics that can be observed in the physical system that isn’t present in

the model. The first question that needs to be asked is, how much do these differences cause the

controllers designed using the model to become useless or no longer predictive of the physical

systems behavior? The next question that needs to be ask is, if the controllers that do work

are good enough or if they need to be better in some way?

Overall the model of RADA behaves well enough. The model is not perfect there are still

some oscillations that the model doesn’t explain but they are fairly small. The disturbance

response of the pendulum and the motion of the robot don’t match exactly but they are

very similar overall. The controller system design behaves well enough. While there are also

additional unmodeled dynamics such as the center of mass of the pendulum, vibrations within

the pendulum system, sensor noise, and delays are all currently not taken into account. One

such issue could be that the wheels are not perfectly mounted to the system causing the actual

system to have wheels that rotate like an oval instead of a circle. This could be simulated as a

sinusoidal wheel force disturbance at twice the rotational frequency of the wheels. Figure 8.1

compares the RADA model undisturbed in blue to a simple sinusoidal wheel force model shown

by the red dots when both systems are controlled with the full system LQG from Chapter 6.

Overall this could help to explain some of the noise in linear velocity calculation but it doesn’t

seem to effect the pendulum much at least not at this amplitude. Other sources of noise like

vibration and flex of the pendulum should be investigated in the future and characterized.

Adding disturbances into the model would make simulation match the system better but it

wouldn’t necessarily make better controllers. The non-linear model of RADA is good enough
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Figure 8.1 Simulation test of a possible wheel force disturbance model.

as it is unless some drastic changes occur to degrade the physical system, that would require

additions to the model. The full system LQG controller rejects the disturbances fast enough

and accelerates the robot quick enough to meet the goals of RADA. The subsystem based LQG

controller design is somewhat better than the PID controller but is not as good overall than

the full system LQG controller and would only be beneficial if the system design required the

pendulum and cart to be treated as separate systems that couldn’t communicate. Otherwise,

the full system controller design architecture produces better controllers.

The fact that the vehicle stops quicker and causes larger disturbances to the pendulum is

not really too concerning for the use case of RADA. It is meant to continuously move through

a row of crops so the initial acceleration and disturbance attenuation is more important for

getting the best data. When RADA stops it will be after the end of the row and will need to

maneuver the next row so there is plenty of time to attenuate the larger amplitude disturbance.

The model of RADA and the physical system itself could be further refined but the current

model reflects the current behavior of the system well enough to serve as a foundation for

future controller development and should be capable of being modified as the physical system

evolves. Overall the model is not 100% complete but it works well enough to be the foundation

for future expansion and improvements to the system.
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8.1 Future work

In the future RADA will need to be expanded and improved. The current prototype is

functional but by no means ideal. The main issues with the system is that the current pendulum

arm is too flexible in its current form. This will need to be remedied especially if an outdoor

prototype is going to be produced as the pendulum arm will need to be lengthened up to twice

its current length making any vibrations worse. Obviously the drive train needs to be improved

for any sort of outdoor prototype. A tank tread like drive train would probably work the best

out in the field. In terms of the electronics the FPGA should be replaced as it was designed to

be used a motor controller instead of being used like an FPGA. The motor controller portion

of current system should be very easy to recreate on a new platform. The wheel motors and

gearboxes will need to be replaced if the drive train is changed. The power distribution board

also needs to at least be rebuilt seeing as it was photo-etched and has no solder mask to prevent

short circuits. Finally, the power cable running up the pendulum needs to have larger wires to

power the propellers as there is significant power loss with the current system.

The current prototype also needs upgraded localization sensors. The camera system works

well in the lab, but it cannot be taken out into a field. The pendulum requires an inertial

measurement unit (IMU) in order to calculate the current orientation without the camera sys-

tem. The ground robot will also need a global positioning system (GPS) for position and

speed and a magnetometer to calculate heading. Another IMU and quadrature motor encoders

to dead recon between GPS updates would also be useful for navigating the ground vehicle.

These additions are part of the reason for upgrading the FPGA because the host CPU’s mother-

board doesn’t support the communication protocols needed to communicate with these sensors.

Without an easily reconfigurable FPGA it will be difficult to integrate these sensors.

RADA can also be used in its current form to test advance control schemes. One example of

this would be testing the optimal mean-squared performance for controllers over fading channels

developed in [27]. The ability to use the LAN connection to force packet loss will allow for

good analysis of how the controller perform under varying amounts of packet loss. Then the

same controller can be tested using the wireless connection to test how it performs under a
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real fading channel. A second idea is to test co-operative controllers where the pendulum

and ground vehicle are split into two systems and tell the pendulum of the vehicle’s velocity

commands before actually giving the command to the ground robot. This is desirable because

even though the propeller dynamics were simplified out of the linear system used for controller

design in Chapter 6.1, the propellers are still slower than the disturbance caused by the wheel

acceleration so allowing the propellers a few sample periods to spin up before actually seeing

the disturbance should help the system preform even better. These are just a few ideas for

other controllers that could be demonstrated on this in-lab prototype due to the very powerful

processor and camera system available for use with the system.
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